# AUTOMATIC CONTINGENCY SELECTION

Ejebe/Wollenberg

EE 8725 Presentation November 3, 2015 Tahnee Miller

## Abstract

- Paper by G.C. Ejebe and B.F. Wollenberg submitted to the IEEE Transactions on Power Apparatus and Systems in 1979.
- A fast technique for the automatic ranking and selection of contingency cases for a power system contingency analysis study.
- Contingencies are ranked according to their expected severity as reflected in voltage level degradation and circuit overloads.
- An adaptive contingency processor can be set up by performing sequential contingency tests starting with the most severe and stopping when the severity drops below a certain threshold.
- Numerical examples on several test cases are provided.

## **Presentation Summary**

- Introduction to Methodology
- System Performance Indices
  - System Performance Index for Voltage Analysis
  - System Performance Index for Power Flow Analysis
  - Other Contingency Ranking Methods
- Creating Ordered Contingency Lists
- Numerical Examples
- Stopping Criteria for the Adaptive Contingency Processor
- Conclusions

## INTRODUCTION TO METHODOLOGY

## Traditional Approach

- Simulate outages to determine impact on bus voltages and power flow using fast computational techniques
- Time-consuming and costly
- Contingencies often selected based on planner's experience
- In real time, contingency testing is up to operator
  - System is constantly changing so impact is different than what may have been determined to be "worst case" by planners

## **Proposed Solution**

- Purpose is to be able to rank contingencies by severity
- Method uses Tellegen's theorem to order the outages
- Non-linear AC load flow equations are used to evaluate contingencies based on voltage quality
- Simplified DC load flow model is used to evaluate contingencies based on power flow
- Method DOES NOT indicates if the contingency will cause problems, just ranks them in order of severity
- Result is a list of contingencies from "worst" to "best"
  - You can then run detailed analysis starting at top of list until you reach a case that does not cause system issues

#### Adaptive Contingency Processor



## SYSTEM PERFORMANCE INDICES

## Background

- Traditional approach is to model outage, perform load flow calculations, and check for:
  - I. Bus voltages outside of normal limits
  - 2. Branch power flows outside of normal operating limits
- Proposed method uses these two sets of limits to develop system performance indices reflecting the contingency severity
  - Limits are treated as soft constraints to rank contingencies

## I. Index for Voltage Analysis

$$PI_V = \sum_{i=1}^{NB} \frac{W_{V_i}}{2n} \left(\frac{|V_i| - |V_i^{sp}|}{\Delta V_i^{Lim}}\right)^{2n}$$

where:

 $|V_i|$  is the voltage magnitude at bus i

 $|V_i^{sp}|$  is the specified (rated) voltage magnitude at bus i

 $\Delta V_i^{Lim}$  is the voltage deviation limit, above which voltage deviations are unacceptable

n is the exponent of penalty function (n = 1 is preferred)

NB is the number of buses in the system

 $W_{V_i}$  is the real non-negative weighting factor

## I. Index for Voltage Analysis

- Recall:  $\Delta V_i^{Lim}$  is the voltage deviation limit, above which voltage deviations are unacceptable
  - If voltage is outside this limit,  $PI_V$  will be large
  - If voltage is within this limit,  $PI_V$  will be small
- Thus  $PI_V$  allows us to rank contingencies based on severity using the voltage limits on the system buses involved
- Problem: bus voltages depend on reactive power flow, which is not considered in this index
  - What if generators are driven to their reactive power (Q) limits?
- Solution: revised index to include reactive power constraints

## I. Index for Voltage Analysis

$$PI_{VQ} = \sum_{i=1}^{NB} \frac{W_{V_i}}{2n} \left(\frac{|V_i| - |V_i^{Sp}|}{\Delta V_i^{Lim}}\right)^{2n} + \sum_{i=1}^{NG} \frac{W_{Q_i}}{2n} \left(\frac{Q_i}{Q_i^{Max}}\right)^{2n}$$

where:

 $|V_i|$  is the voltage magnitude at bus i

 $|V_i^{sp}|$  is the specified (rated) voltage magnitude at bus i

 $\Delta V_i^{Lim}$  is the voltage deviation limit, above which voltage deviations are unacceptable

n is the exponent of penalty function (n = I is preferred)

NB is the number of buses in the system

 $W_{V_i}$  is the real non-negative weighting factor

 $Q_i$  is the reactive power produced at bus i

 $Q_i^{Max}$  is the reactive power production limit

NG is the number of reactive power production units

 $W_{Q_i}$  is the real non-negative weighting factor (set to 0 if not required)

## 2. Index for Power Flow Analysis

$$PI_{MW} = \sum_{l=1}^{NL} \frac{W_l}{2n} \left(\frac{P_l}{P_l^{Lim}}\right)^{2n}$$

where:

 $P_l$  is the megawatt flow of line *l* (calculated by the DC load flow model)

 $P_l^{Lim}$  is the megawatt capacity of line *l* 

NL is the number of lines in the system

n is the specified exponent (n = I is preferred)

 $W_l$  is the real non-negative weighting coefficient; may be used to reflect importance of some lines

## 2. Index for Power Flow Analysis

• Recall:  $P_l^{Lim}$  is the line capacity limit

- If line flows exceed their limits, Pl<sub>MW</sub> will be large
- If line flows are within their limits,  $PI_{MW}$  will be small
- The absolute value of  $PI_{MW}$  for each outage is not significant
  - Ranking is done by comparing  $\text{PI}_{\text{MW}}$  for each outage and looking at the relative change
  - This is done by looking at the results of the DC load flow solution before the outage (base case) and after the outage (adjoint power system

## Other Contingency Ranking Methods

- I. Distribution factor method
  - Very fast, but not very accurate
  - Can be used to prescreen contingencies for AC load flow
  - Does not provide voltage prediction
- Ranking based on assumption that the loss of a heavily loaded line would likely result in overloads on other lines
  - 2. Ranking in order of most heavily loaded to least
  - 3. Ranking in order of absolute magnitudes of line flows
  - Both methods were considered, but were determined to not provide proper contingency selection

## CREATING ORDERED CONTINGENCY LISTS

## **Contingency List Options**

| Option | Performance Index   | Outage Type                                                            |
|--------|---------------------|------------------------------------------------------------------------|
| I. I.  | $PI_V$ or $PI_{VQ}$ | Line and/or generator outages                                          |
| 2      | $PI_{MW}$           | Line outages                                                           |
| 3      | PI <sub>MW</sub>    | Generator outages<br>(Allows for redispatch of the<br>lost generation) |

 May focus on only one option, or repeat procedure to look at all three

## Tellegen's Theorem

- All three options give sensitivities in terms of incremental change in performance index to an incremental change in line admittance or generator output
  - The full effect would be found my multiplying the derivative by the full line admittance using Tellegen's Theorem
- Tellegen's Theorem: allows rapid computation of gradient vectors which contain the performance index derivatives
- Resulting normalized numbers represent the  $\Delta \text{PI}$  for each contingency
  - Misorderings may occur due to the linear approximation
  - Non-perfect ranking is ok because the stopping criteria will cover that

## NUMERICAL EXAMPLES

- EHV backbone of the ITAIPU transmission system
- Scheme designed for use in Brazil over Ione 800 kV lines



- System has synchronous generators and reactors
- Has had previous indications of reliability issues
- Chosen to be a test case for the voltage performance index  $PI_V$  with line outages only (Option I)
  - $\Delta V_i^{Lim}$  was set to 0.075 pu (±7.5% voltage threshold)

Comparison of AC Load Flow and Contingency Ranking Algorithm for the Voltage Index on 11-Bus System

| Line Outage Ranking by AC Load Flow |                                              |                                     | Line Outage Ranking by Contingency Selector |                                       |  |  |
|-------------------------------------|----------------------------------------------|-------------------------------------|---------------------------------------------|---------------------------------------|--|--|
| Ordered Line<br>Numbers             | Voltage Performance<br>Index PI <sub>V</sub> | Worst % of Out-of-<br>Limit Voltage | Ordered Line<br>Numbers                     | Normalized Sensitivity ( $\Delta$ PI) |  |  |
| 7                                   | 1.9697                                       | 1.24                                | 7                                           | 0.2676                                |  |  |
| 8                                   | 1.4341                                       | 0.97                                | 8                                           | 0.2475                                |  |  |
| 9                                   | 1.127                                        | 0.93                                | 9                                           | 0.1784                                |  |  |
| 5                                   | 0.9878                                       | 0.78                                | 5                                           | 0.1445                                |  |  |
| 4                                   | 0.8073                                       | 0.72                                | 6                                           | 0.0659                                |  |  |
| 6                                   | 0.6182                                       | 0.64                                | 12                                          | 0.0364                                |  |  |
| 12                                  | 0.4861                                       | 0.67                                | П                                           | 0.0322                                |  |  |
| П                                   | 0.4797                                       | 0.64                                | 10                                          | 0.0314                                |  |  |
| 10                                  | 0.4654                                       | 0.67                                | 4                                           | 0.0236                                |  |  |
| 3                                   | 0.4374                                       | 0.60                                | 15                                          | 0.0022                                |  |  |
| 2                                   | 0.4310                                       | 0.60                                | 13                                          | 0.0002                                |  |  |
| 13                                  | 0.4273                                       | 0.61                                | I                                           | -0.2504E-5                            |  |  |
| 15                                  | 0.4271                                       | 0.60                                | 2                                           | -0.1295E-4                            |  |  |
| 14                                  | 0.4252                                       | 0.60                                | 3                                           | -0.2171E-4                            |  |  |
| I                                   | 0.4198                                       | 0.59                                | 14                                          | -0.2101E-4                            |  |  |

Effectiveness Profile of Voltage Performance Index for 11-Bus System



Comparison of Voltages and Voltage Indices for Worst Three Outages on 11-Bus System

| Bus | Base Case Voltages | Line 7 Outage | Line 8 Outage | Line 9 Outage |
|-----|--------------------|---------------|---------------|---------------|
| I   | 0.9950             | 0.9950        | 0.9950        | 0.9950        |
| 2   | 1.0000             | 1.0000        | 1.0000        | 1.0000        |
| 3   | 0.9807             | 0.9693        | 0.9875        | 0.9810        |
| 4   | 0.9900             | 0.9346        | 0.9547        | 0.9398        |
| 5   | 0.9517             | 0.9021        | 0.9938        | 0.9669        |
| 6   | 0.9469             | 0.9354        | 0.9295        | 0.9380        |
| 7   | 0.9443             | 0.9199        | 0.9392        | 0.9291        |
| 8   | 0.9700             | 0.9700        | 0.9655        | 0.9700        |
| 9   | 0.9657             | 0.9665        | 0.9700        | 0.9700        |
| 10  | 0.9778             | 0.9782        | 0.9782        | 0.9792        |
| П   | 0.9900             | 0.9900        | 0.9900        | 0.9900        |
|     | Voltage Index      | 1.9697        | 1.4341        | 1.1270        |

## Test System #2 – 29-Bus System

• A modified version of the IEEE 30-bus system as shown below



#### Test System #2 – 29-Bus System

• Chosen as a test case for  $PI_{VQ}$  (Option I) with line outages and  $PI_{MW}$  with line outages (Option 2)



## Test System #3 – 10-Bus CIGRE System

- System has seven generating plants
- Chosen as a test case for  $PI_{VQ}$  (Option I) with generator outages and  $PI_{MW}$  with generator outages (Option 3)

Contingency Selection Rankings on 10-Bus CIGRE System

| AC Load Flow                    |                                                   | Contingency Selection           |                                    |                         | DC Lo                           | oad Flow                                         | Contingency Selection           |                                                 |
|---------------------------------|---------------------------------------------------|---------------------------------|------------------------------------|-------------------------|---------------------------------|--------------------------------------------------|---------------------------------|-------------------------------------------------|
| Ordered<br>Generator<br>Numbers | Voltage<br>Performance<br>Index PI <sub>V</sub>   | Ordered<br>Generator<br>Numbers | Normalized<br>Sensitivity<br>(ΔΡΙ) | Worst<br>Bus<br>Voltage | Ordered<br>Generator<br>Numbers | Voltage<br>Performance<br>Index PI <sub>MW</sub> | Ordered<br>Generator<br>Numbers | Normalized<br>Sensitivity<br>$(\Delta PI_{MW})$ |
| 3                               | 0.9543                                            | 3                               | 0.4832                             | 0.818                   | 3                               | 1.6932                                           | 3                               | 0.4699                                          |
| 5                               | 0.9215                                            | 5                               | 0.1849                             | 0.834                   | 7                               | 0.7985                                           | 4                               | 0.1683                                          |
| 6                               | 0.6912                                            | 6                               | 0.1383                             | 0.886                   | 4                               | 0.6589                                           | 6                               | 0.1442                                          |
| 7                               | 0.3136                                            | 4                               | 0.1165                             | 0.965                   | 6                               | 0.6157                                           | 7                               | 0.1418                                          |
| 4                               | 0.3010                                            | 2                               | 0.0065                             | 0.970                   | 5                               | 0.4818                                           | 5                               | 0.0386                                          |
| 2                               | 0.1373                                            | 7                               | -0.3059                            | 0.983                   | I                               | 0.3188                                           | I                               | -0.3328                                         |
| L                               | Swing bus generator excluded from voltage ranking |                                 |                                    |                         | 2                               | 0.1935                                           | 2                               | -0.9597                                         |

#### Ranking for Voltage Analysis

#### Ranking for Line Overloads

## STOPPING CRITERIA FOR ADAPTIVE CONTINGENCY PROCESSOR

### Advanced Contingency Processor



## Stopping Criteria

- Simplest option would be to stop as soon as a case showed an out-of-limit condition
  - This would work for some cases, but not others
- A better option is to do the load flows and stop once there were no out-of-limit conditions X times in a row
  - X would be determined by experience
- Another option is to just run N number of cases, regardless of if there are out-of-limit conditions are not
  - N would be determined by experience, but typically between 1 and 20
- One referenced program ran N primary outages and X secondary outages, combining the second two options above

## CONCLUSIONS

## Summary

- Algorithm presented increases the effectiveness of existing contingency analysis techniques
  - Provides an ordered list of contingencies to identify those which are likely to cause the most sever system issues
  - Process creates a list of primary contingencies and then lists for secondary contingencies
  - Will enable system operators to identify weaknesses more quickly
- Ranking algorithm is not perfect, and requires user input for the stopping criteria
- Process has been applied to single outage contingency cases
  - Further work anticipated for multiple outages